The infinite polyhedra of Wachman, Burt, and Kleinmann
In 1974, three researchers at the Faculty of Architecture and Town
Planning of the Technion produced a most amazing collection of isogonal
polyhedra. Even more stunning was that the examples appear not to be
mere drawings but instead photographs of physically created models for
each polyhedron. They published their collection in the book
Infinite Polyhedra, later reprinted in 2005. While it might be
supposed the book was made in order to highlight what could become
interesting architectural design elements, it is clearly a work of
mathematics. But, very disappointingly, the book was overlooked by the
mathematical community, or at least those interested in isogonal
polyhedra. For example, this book was published three years before the
much more widely known and cited (in terms of isogonal polyhedra) one
by A.F. Wells. Branko discovered this book and showed it to me and I
then wrote to the Technion asking where I could purchase one. However,
Professor Wachman instead sent me a complimentary copy, for which I am
most appreciative. It is my hope that the extraordinary efforts made by
these three researchers, along with the students and staff at the
Technion who helped them, will now see their discoveries made available
to a much wider audience.
The book groups the polyhedra into sections according to their shaped
appearances and these groupings are the same as used in the listings
below on this page. The theory that was used for finding them was the
same theory of nets that Wells
used. The book begins with a preface that describes the overall
structure of the book and includes some of the simpler polyhedra. The
majority of the book then describes the more complex polyhedra. Thus
the pages below that have Roman numerals refer to those polyhedra that
appear in the preface section. Some pages have more than one
polyhedron, and these are listed below as 't' or 'b', depending on
whether they are on the top or bottom of the page. Polyhedra that have
already appeared someplace else on some other web pages at this site are
linked to those earlier appearances.
The infinite polyhedra of Wachman, Burt, and Kleinmann
- The Coxeter Polyhedra
- Page III: the {4,6} sponge
- Page III: the {6,4} sponge
- Page III: the {6,6} sponge
- Cylindrical Infinite Polyhedra
- Page VIII: {4,4} prismatic rods with various polygonal cross-sections
- Page VIII: {3,6} antiprismatic rods with various polygonal cross-sections
- Rods
- Triangular cross-section (3.3.3.3.3.3)
- Square cross-section (3.3.3.3.3.3)
- Pentagonal cross-section (3.3.3.3.3.3)
- Hexagonal cross-section (3.3.3.3.3.3)
- Incidence symbols
- [a+ b a- a+ b a-; a+ b]
- [a+ b+ c+ a+ b+ c+;
a+ b+ c+]
- [a+ b+ c+ a+ b+ c+;
c- b+ a-]
- [a+ b+ c+ c- b- a-;
a+ b- c+]
- [a+ b+ c+ c- b- a-;
c- b- a-]
- [a+ b+ c+ d+ e+ f+;
a+ e+ c+ d+ b+ f+]
- [a+ b+ c+ d+ e+ f+;
a+ e+ d- c- b+ f+]
- [a+ b+ c+ d+ e+ f+;
c- e+ a- f- b+ d-]
- [a+ b+ c+ d+ e+ f+;
d+ e+ f+ a+ b+ c+]
- [a+ b+ c+ d+ e+ f+;
f- e+ d- c- b+ a-]
- [a+ b+ c+ d+ e+ f+;
a+ b+ f+ d+ e+ c+] (only for even-edged cross-sections)
- [a+ b+ c+ d+ e+ f+;
a+ e- c+ f- b- d-] (only for even-edged cross-sections)
- [a+ b+ c+ d+ e+ f+;
c- e- a- d+ b- f+] (only for even-edged cross-sections)
- Page VIII: 3.3.3.4.4 rods made with alternating prisms and antiprisms
- Page VIII: {3,6} rods with square, hexagonal, and octagonal cross-sections
- Page VIII: 3.3.3.4.4 rods (longitudinal strips of squares and triangles)
- Page VIII: {3,6} helicoid rods with various polygonal cross-sections
- Corrugated Polyhedra
- Page IX: {4,4} folded planes (two types)
- Page IX: {3,6} folded planes (two types)
- Page IX: 3.3.3.4.4 folded planes (three types)
- Strips of squares parallel to the plane (3.3.3.4.4)
- [a+ b+ b- a- c;
a- b^- b^+ a+ c]
- [a+ b+ c+ d+ e+;
d+ b^- c^- a+ e+]
- [a+ b+ c+ d+ e+;
d+ b^- c^- a+ e-]
- [a+ b+ c+ d+ e+;
d+ c^+ b^+ a+ e+]
- [a+ b+ c+ d+ e+;
d+ c^+ b^+ a+ e-]
- Strips of triangles parallel to the plane (3.3.3.4.4) (same as above)
- [a+ b+ b- a- c;
a- b+ b- a+ c^]
- [a+ b+ c+ d+ e+;
d+ b+ c+ a+ e^+]
- [a+ b+ c+ d+ e+;
d+ b+ c+ a+ e^-]
- [a+ b+ c+ d+ e+;
d+ c- b- a+ e^+]
- [a+ b+ c+ d+ e+;
d+ c- b- a+ e^-]
- No strips parallel to the plane (3.3.3.4.4)
- [a+ b+ b- a- c;
a- b^- b^+ a+ c^]
- [a+ b+ c+ d+ e+;
d+ b^- c^- a+ e^+]
- [a+ b+ c+ d+ e+;
d+ b^- c^- a+ e^-]
- [a+ b+ c+ d+ e+;
d+ c^+ b^+ a+ e^+]
- [a+ b+ c+ d+ e+;
d+ c^+ b^+ a+ e^-]
- Mono-Layered Polyhedra
- Page 2 (t,b): Two (S2 and N5) of the fifteen {4,5} cubic lattice polyhedra
- Page 3 (t): A 4.4.8.8 slab polyhedron (4.4.8.8)
- [a b+ c b-;
a b- c b+]
- [a+ b+ c+ d+;
a+ b- c+ d-]
- [a+ b+ c+ d+;
a+ b- c- d-]
- [a+ b+ c+ d+;
a- b- c+ d-]
- [a+ b+ c+ d+;
a- b- c- d-]
- [a+ b+ c+ d+;
a+ d+ c+ b+]
- [a+ b+ c+ d+;
a+ d+ c- b+]
- [a+ b+ c+ d+;
a- d+ c+ b+]
- [a+ b+ c+ d+;
a- d+ c- b+]
- Page 3 (b): A 4.4.4.8 slab polyhedron (4.4.4.8)
- [a+ b+ c+ d+;
a- b- c- d-]
- Page 4: A 3.3.4.3.4.4 slab polyhedron (3.3.4.3.4.4)
- [a+ b+ c+ d+ e+ f+;
e+ b+ d+ c+ a+ f-]
- Page 5 (t): A 3.3.3.3.3.4.4 slab polyhedron (3.3.3.3.3.4.4)
- [a+ b+ c+ c- b- a- d;
a- c+ b+ b- c- a+ d]
- [a+ b+ c+ d+ e+ f+ g+;
f+ c+ b+ e+ d+ a+ g+]
- [a+ b+ c+ d+ e+ f+ g+;
f+ c+ b+ e+ d+ a+ g-]
- Page 5 (b): Polyhedron (38)P1 of the Hughes Jones polyhedra
- Page 6: A 4.4.6.6 slab polyhedron (4.4.6.6)
- [a+ b a- c;
a- b a+ c]
- [a+ b+ c+ d+;
a- b- c- d+]
- [a+ b+ c+ d+;
a- b- c- d-]
- [a+ b+ c+ d+;
c+ b+ a+ d+]
- [a+ b+ c+ d+;
c+ b+ a+ d-]
- Page 7: A 4.4.12.12 slab polyhedron (4.4.12.12)
- [a b+ c b-;
a b- c]
- [a+ b+ c+ d+;
a+ d+ c+ b+]
- [a+ b+ c+ d+;
a+ d+ c- b+]
- [a+ b+ c+ d+;
a- d+ c+ b+]
- [a+ b+ c+ d+;
a- d+ c- b+]
- Page 8 (t): A 6.3.6.4.4 slab polyhedron (6.3.6.4.4)
- [a+ b+ b- a- c;
a- b- b+ a+ c]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e+]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e-]
- Page 8 (b): A 6.3.6.3.3.3 slab polyhedron (6.3.6.3.3.3)
- [a+ b+ b- a- c+ c-;
a- b- b+ a+ c+]
- [a+ b+ c+ d+ e+ f+;
d+ c+ b+ a+ e+ f+]
- [a+ b+ c+ d+ e+ f+;
d+ c+ b+ a+ f- e-]
- Page 9 (t): A 4.3.4.4.4 slab polyhedron (4.3.4.4.4)
- [a+ b+ b- a- c;
a- b- b+ a+ c]
- [a+ b+ c+ d+ e+;
a- c+ b+ d- e+]
- [a+ b+ c+ d+ e+;
a- c+ b+ d- e-]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e+]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e-]
- Page 9 (b): A 4.6.4.4.4 slab polyhedron (4.6.4.4.4)
- [a+ b+ b- a- c;
a- b- b+ a+ c]
- [a+ b+ c+ d+ e+;
d+ b- c- a+ e+]
- [a+ b+ c+ d+ e+;
d+ b- c- a+ e-]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e+]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e-]
- Page 10 (t): A 4.4.4.12 slab polyhedron (4.4.4.12)
- [a+ b+ c+ d+;
a- b- c- d-]
- Page 10 (b): A 4.4.6.12 slab polyhedron (4.4.6.12)
- [a+ b+ c+ d+;
a- b- c- d-]
- Page 11: A 4.4.4.6 slab polyhedron (4.4.4.6)
- [a+ b+ c+ d+;
a- b- c- d-]
- Page 12 (t): A 3.3.6.3.4.4 slab polyhedron (3.3.6.3.4.4)
- [a+ b+ c+ d+ e+ f+;
e+ b+ d+ c+ a+ f-]
- Page 12 (b): A 3.3.3.3.4.4 slab polyhedron (3.3.3.3.4.4)
- [a+ b+ c+ d+ e+ f+;
e+ b+ d+ c+ a+ f-]
- Page 13: Not an isogonal polyhedron (as indicated in the book by the word 'nonuniform') (3.3.3.4.4.4)
- Multi-Layered Polyhedra
- Page 15: Polyhedron S3 of the {4,5} cubic lattice polyhedra
- Page 16: Polyhedron N7 of the {4,5} cubic lattice polyhedra
- Page 17: Polyhedron N11 of the {4,5} cubic lattice polyhedra
- Page 18: A 4.4.8.8 multi-layered polyhedron (4.4.8.8) (same as page 3(t))
- [a b+ c b-;
a b- c^]
- [a+ b+ c+ d+;
a+ b- c^+ d-]
- [a+ b+ c+ d+;
a+ b- c^- d-]
- [a+ b+ c+ d+;
a- b- c^+ d-]
- [a+ b+ c+ d+;
a- b- c^- d-]
- [a+ b+ c+ d+;
a+ d+ c^+ b+]
- [a+ b+ c+ d+;
a+ d+ c^- b+]
- [a+ b+ c+ d+;
a- d+ c^+ b+]
- [a+ b+ c+ d+;
a- d+ c^- b+]
- Page 19: A 4.4.4.8 multi-layered polyhedron (4.4.4.8) (same as page 3(b))
- [a+ b+ c+ d+;
a- b- c^+ d-]
- Page 20: A {4,5} (not cubic lattice) multi-layered polyhedron (same as Wells (4,5)-(4+2)tf)
- Page 21: A 3.3.4.3.4.4 multi-layered polyhedron (3.3.4.3.4.4) (same as page 4)
- [a+ b+ c+ d+ e+ f+;
e+ b^- d^- c^- a+ f-]
- Page 22: A 4.3.3.4.4.3.4 multi-layered polyhedron (4.3.3.4.4.3.4)
- [a+ b+ c*+ b^+ a^+ d^+ d+;
a- d+ c*+ d^+ a^- b^+]
- [a+ b+ c+ d+ e+ f+ g+;
a- f^+ c+ g^+ e- b^+ d^+]
- [a+ b+ c+ d+ e+ f+ g+;
a- g+ c+ f+ e- d+ b+]
- [a+ b+ c+ d+ e+ f+ g+;
e^- f^+ c+ g^+ a^- b^+ d^+]
- [a+ b+ c+ d+ e+ f+ g+;
e^- g+ c+ f+ a^- d+ b+]
- Page 23: A 4.3.4.4.3.3.4 multi-layered polyhedron (4.3.4.4.3.3.4)
- [a+ b+ b- a- c+ d c-;
a- c^+ c^- a+ b^+ d]
- [a+ b+ c+ d+ e+ f+ g+;
a- e^+ g^+ d- b^+ f+ c^+]
- [a+ b+ c+ d+ e+ f+ g+;
a- g^- e^- d- c^- f+ b^-]
- [a+ b+ c+ d+ e+ f+ g+;
d+ e^+ g^+ a+ b^+ f+ c^+]
- [a+ b+ c+ d+ e+ f+ g+;
d+ g^- e^- a+ c^- f+ b^-]
- Page 24: A 3.3.3.3.4.3.3.4 multi-layered polyhedron (3.3.3.3.4.3.3.4)
- [a+ b+ c b- a- d+ e d-;
d^+ b+ e^ b- d^- a^+ c^]
- [a+ b+ c+ d+ e+ f+ g+ h+;
f^+ b+ g^+ d+ h^+ a^+ c^+ e^+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
f^+ d- g^- b- h^+ a^+ c^- e^+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
h^- b+ g^- d+ f^- e^- c^- a^-]
- [a+ b+ c+ d+ e+ f+ g+ h+;
h^- d- g^+ b- f^- e^- c^+ a^-]
- Page 25: Polyhedron (39)P11 of the Hughes Jones polyhedra
- Page 26: Polyhedron (39)P2 of the Hughes Jones polyhedra
- Page 27: A 4.3.4.4.3.3.3.4 multi-layered polyhedron (4.3.4.4.3.3.3.4)
- [a+ b+ b^+ a^+ c^+ d^+ d+ c+;
a+ c+ c^+ a^+ b^+ d+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
a+ h+ e+ d+ c+ g+ f+ b+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d^+ h+ e+ a^+ c+ g+ f+ b+]
- Page 28: A {3,10} multi-layered polyhedron (3.3.3.3.3.3.3.3.3.3)
- [a+ b+ c+ c^+ b^+ a^+ d+ e+ e^+ d^+;
b- a- d^+ d+ a^- b^- c^+ e^+]
- [a+ b+ c+ d+ e+ f+ g+ h+ i+ j+;
b- a- j+ g+ f- e- d+ i+ h+ c+]
- [a+ b+ c+ d+ e+ f+ g+ h+ i+ j+;
e^- f^- j+ g+ a^- b^- d+ i+ h+ c+]
- Page 29: Two similar but different (as in the book, and the other) {3,10} multi-layered polyhedra (3.3.3.3.3.3.3.3.3.3)
- (In the book) [a+ b+ c+ d+ e+ f+ g+ h+ i+ j+;
b+ a+ f^- h^- i+ c^- j^- d^- e+ g^-]
- (The other) [a+ b+ c+ d+ e+ f+ g+ h+ i+ j+;
b+ a+ h^+ f^+ i+ d^+ j^+ c^+ e+ g^+]
- Page 30: A 3.3.3.12.12 multi-layered polyhedron (3.3.3.12.12)
- [a+ a- b+ c b-;
a+ a- b- c^]
- [a+ b+ c+ d+ e+;
a+ b+ e+ d^+ c+]
- [a+ b+ c+ d+ e+;
a+ b+ e+ d^- c+]
- [a+ b+ c+ d+ e+;
b- a- e+ d^+ c+]
- [a+ b+ c+ d+ e+;
b- a- e+ d^- c+]
- Page 31: A 3.3.3.6.3.3.3.6 multi-layered polyhedron (3.3.3.6.3.3.3.6)
- [a+ b+ b- a- a^- b^- b^+ a^+;
a- b+]
- [a+ b+ c+ d+ d^+ c^+ b^+ a^+;
d+ b+ c+ a+]
- [a+ b+ c+ d+ d^+ c^+ b^+ a^+;
d+ c- b- a+]
- [a+ b+ b- a- c+ d+ d- c-;
a- b+ b- a+ c- d+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d+ b+ c+ a+ h+ f+ g+ e+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d+ b+ c+ a+ h+ g- f- e+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d+ c- b- a+ h+ f+ g+ e+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d+ c- b- a+ h+ g- f- e+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d+ f^- g^- a+ h+ b^- c^- e+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d+ g^+ f^+ a+ h+ c^+ b^+ e+]
- Page 32: A 3.3.3.4.6.4 multi-layered polyhedron (3.3.3.4.6.4)
- [a+ a- b+ c+ c- b-;
a+ a- b- c^+]
- [a+ b+ c+ d+ e+ f+;
a+ b+ f+ d^+ e^+ c+]
- [a+ b+ c+ d+ e+ f+;
a+ b+ f+ e^- d^- c+]
- [a+ b+ c+ d+ e+ f+;
b- a- f+ d^+ e^+ c+]
- [a+ b+ c+ d+ e+ f+;
b- a- f+ e^- d^- c+]
- Page 33: A 3.3.3.3.3.3.6 multi-layered polyhedron (3.3.3.3.3.3.6)
- [a+ b+ c+ d+ e+ f+ g+;
b- a- g+ e^- d^- f^- c+]
- Page 34: A second 3.3.3.3.3.3.6 multi-layered polyhedron polyhedron (3.3.3.3.3.3.6)
- [a+ b+ c+ d+ e+ f+ g+;
b^- a^- f^+ d^- g- c^+ e-]
- Page 35: A second 4.3.4.4.3.3.3.4 multi-layered polyhedron (4.3.4.4.3.3.3.4) (same as page 27)
- [a+ b+ b^+ a^+ c^+ d^+ d+ c+;
a- c+ c^+ a^- b^+ d+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
a- h+ e+ d- c+ g+ f+ b+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d^- h+ e+ a^- c+ g+ f+ b+]
- Page 36: A second {3,10} multi-layered polyhedron (3.3.3.3.3.3.3.3.3.3) (same as page 28)
- [a+ b+ c+ c^+ b^+ a^+ d+ e+ e^+ d^+;
a+ b+ d^+ d+ b^+ a^+ c^+ e^+]
- [a+ b+ c+ d+ e+ f+ g+ h+ i+ j+;
a+ b+ j+ g+ e+ f+ d+ i+ h+ c+]
- [a+ b+ c+ d+ e+ f+ g+ h+ i+ j+;
f^+ e^+ j+ g+ b^+ a^+ d+ i+ h+ c+]
- Page 37: A 4.4.4.6.4 multi-layered polyhedron (4.4.4.6.4)
- [a+ b*+ a^+ c+ c^+;
a- b*- a^- c-]
- [a+ b+ c+ d+ e+;
a- b- c- d- e-]
- [a+ b+ c+ d+ e+;
a- b^- c- e^- d^-]
- [a+ b+ c+ d+ e+;
c^- b- a^- d- e-]
- [a+ b+ c+ d+ e+;
c^- b^- a^- e^- d^-]
- Page 38: A 4.4.12.12 multi-layered polyhedron (4.4.12.12) (same as page 7)
- [a b+ c b-;
a b- c^]
- [a+ b+ c+ d+;
a+ d+ c^+ b+]
- [a+ b+ c+ d+;
a+ d+ c^- b+]
- [a+ b+ c+ d+;
a- d+ c^+ b+]
- [a+ b+ c+ d+;
a- d+ c^- b+]
- Page 39: A 4.4.6.4.4.6 multi-layered polyhedron (4.4.6.4.4.6)
- [a b+ b^+ a^ b^- b-;
a b-]
- [a+ b+ b^+ a^+ c^+ c+;
a+ c+ c^+ a^+ b^+ b+]
- [a+ b+ b^+ a^+ c^+ c+;
a- c+ c^+ a^- b^+ b+]
- [a b+ c+ d c- b-;
a b- c- d c+ b+]
- [a b+ c+ d c- b-;
d^ b- c- a^ c+ b+]
- [a+ b+ c+ d+ e+ f+;
a+ f+ e+ d+ c+ b+]
- [a+ b+ c+ d+ e+ f+;
a+ f+ e+ d- c+ b+]
- [a+ b+ c+ d+ e+ f+;
a- f+ e+ d- c+ b+]
- [a+ b+ c+ d+ e+ f+;
d^+ f+ e+ a^+ c+ b+]
- [a+ b+ c+ d+ e+ f+;
d^- f+ e+ a^- c+ b+]
- Page 40: A 4.4.6.4.4 multi-layered polyhedron (4.4.6.4.4) (same as page 9(b), but with different edge labels)
- [a b+ c+ c- b-;
a b- c^+]
- [a+ b+ c+ d+ e+;
a+ e+ c^+ d^+ b+]
- [a+ b+ c+ d+ e+;
a- e+ c^+ d^+ b+]
- [a+ b+ c+ d+ e+;
a+ e+ d^- c^- b+]
- [a+ b+ c+ d+ e+;
a- e+ d^- c^- b+]
- Page 41: A 4.4.4.12 multi-layered polyhedron (4.4.4.12) (same as page 10(t))
- [a+ b+ c+ d+;
a- b- c^+ d-]
- Page 42: A 4.3.3.6.3.4 multi-layered polyhedron polyhedron (4.3.3.6.3.4) (same as page 12(t))
- [a+ b+ c+ d+ e+ f+;
e+ b^- d^- c^- a+ f-]
- Page 43: A 4.4.4.4.6 multi-layered polyhedron (4.4.4.4.6)
- [a+ b+ c+ d+ e+;
e^- b- c^- d- a^-]
- Page 44: A 4.3.3.3.4.4.3.4 multi-layered polyhedron (4.3.3.3.4.4.3.4)
- [a+ b+ c+ c- b- a- d+ d-;
a- d^+ c- c+ d^- a+ b^+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
f+ g^+ d+ c+ h^+ a+ b^+ e^+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
f+ h^- d+ c+ g^- a+ e^- b^-]
- Page 45: A {4,6} (not cubic lattice) multi-layered polyhedron (4.4.4.4.4.4)
- [a b+ c+ d c- b-;
a b- c- d]
- [a+ b+ c+ d+ e+ f+;
a+ b- e+ d+ c+ f-]
- [a+ b+ c+ d+ e+ f+;
a+ b- e+ d- c+ f-]
- [a+ b+ c+ d+ e+ f+;
a- b- e+ d+ c+ f-]
- [a+ b+ c+ d+ e+ f+;
a- b- e+ d- c+ f-]
- [a+ b+ c+ d+ e+ f+;
a+ f+ e+ d+ c+ b+]
- [a+ b+ c+ d+ e+ f+;
a+ f+ e+ d- c+ b+]
- [a+ b+ c+ d+ e+ f+;
a- f+ e+ d+ c+ b+]
- [a+ b+ c+ d+ e+ f+;
a- f+ e+ d- c+ b+]
- Page 46: A second {4,5} (not cubic lattice) multi-layered polyhedron (4.4.4.4.4)
- [a+ b+ c+ d+ e+;
a- b- c- d- e-]
- Page 47: A different 4.3.4.4.3.3.4 multi-layered polyhedron (4.3.4.4.3.3.4)
- [a+ b+ c+ d+ e+ f+ g+;
a- g+ e+ d- c+ f+ b+]
- Page 48: A 3.3.3.4.4.4 multi-layered polyhedron (3.3.3.4.4.4)
- [a+ b+ c+ d+ e+ f+;
a- b- f+ d+ e+ c+]
- Page 49: A 4.4.4.4.8 multi-layered polyhedron (4.4.4.4.8)
- [a+ b+ c+ d+ e+;
a- b- c+ d- e-]
- Page 50: Polyhedron N6 of the {4,5} cubic lattice polyhedra
- Page 51: Polyhedron N12 of the {4,5} cubic lattice polyhedra
- Page 52: Polyhedron N5 of the {4,6} cubic lattice polyhedra
- Page 53: Polyhedron N4 of the {4,6} cubic lattice polyhedra
- Page 54: Polyhedron N3 of the {4,6} cubic lattice polyhedra
- Page 55: A second 4.4.4.4.8 multi-layered polyhedron (4.4.4.4.8) (same as page 49)
- [a+ b+ c+ d+ e+;
a- b- c- d- e-]
- Page 56: A third 4.4.4.4.8 multi-layered polyhedron (4.4.4.4.8) (same as page 49)
- [a+ b+ c+ d+ e+;
a- b- c- d+ e-]
- Page 57: A 4.6.4.4.4 multi-layered polyhedron (4.6.4.4.4)
- [a+ b+ c+ d+ e+;
a- b- c- d- e-]
- Page 58: A second 4.6.4.4.4 multi-layered polyhedron (4.6.4.4.4) (same as page 57)
- [a+ b+ c+ d+ e+;
a- b- c- d- e+]
- Page 59: A 4.12.4.4.4 multi-layered polyhedron (4.12.4.4.4)
- [a+ b+ c+ d+ e+;
a- b- c- d- e-]
- Page 60: A 3.3.3.4.4.4.4 multi-layered polyhedron (only when asymmetrically marked) (3.3.3.4.4.4.4)
- [a+ b+ c+ d+ e+ f+ g+;
a- b^- c- g^- e+ f^- d^-]
- Page 61: Not an isogonal polyhedron (as indicated in the book by the word 'nonuniform') (3.3.3.4.4.4) (same as page 13)
- Page 62: A different 3.3.3.4.4.4.4 multi-layered polyhedron (3.3.3.4.4.4.4)
- [a+ b+ c+ d+ e+ f+ g+;
a- e+ c+ d+ b+ f- g+]
- Page 63: A 3.3.4.4.3.4.4 multi-layered polyhedron (3.3.4.4.3.4.4)
- [a+ b+ c+ d+ e+ f+ g+;
a- f- c+ g- e- b- d-]
- Page 64: A 4.4.8.4.8 multi-layered polyhedron (4.4.8.4.8)
- [a+ b+ c+ d+ e+;
a- e- c- d- b-]
- Multi-Directional Polyhedra
- Page 66: A 4.8.6.8 multi-directional polyhedron (4.8.6.8)
- [a+ a^+ b+ b^+;
a- a^- b-]
- [a+ b+ c+ d+;
a- b- c- d-]
- [a+ b+ c+ d+;
a- b- d^- c^-]
- [a+ b+ c+ d+;
b^- a^- c- d-]
- [a+ b+ c+ d+;
b^- a^- d^- c^-]
- Page 67: The {4,6} Coxeter sponge
- Page 68: The {6,4} Coxeter sponge
- Page 69: A 4.4.6.6 multi-directional polyhedron (same as Wells 4.4.6.6)
- Page 70: A 4.3.4.4.3.4 multi-directional polyhedron (4.3.4.4.3.4)
- [a b+ b- a b+ b-;
a b-]
- [a b+ c+ d c- b-;
a c+ b+ d]
- [a b+ c+ d c- b-;
d c+ b+ a]
- [a+ b+ c+ a+ b+ c+;
a+ c+ b+]
- [a+ b+ c+ a+ b+ c+;
a- c+ b+]
- [a+ b+ c+ d+ e+ f+;
a+ c+ b+ d+ f+ e+]
- [a+ b+ c+ d+ e+ f+;
a- c+ b+ d- f+ e+]
- [a+ b+ c+ d+ e+ f+;
d+ c+ b+ a+ f+ e+]
- [a+ b+ c+ d+ e+ f+;
d- c+ b+ a- f+ e+]
- Page 71: A 4.3.4.4.4 multi-directional polyhedron (4.3.4.4.4)
- [a+ b+ b- a- c;
a- b- b+ a+ c]
- [a+ b+ c+ d+ e+;
a- c+ b+ d- e+]
- [a+ b+ c+ d+ e+;
a- c+ b+ d- e-]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e+]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e-]
- Page 72: A 4.4.4.6 multi-directional polyhedron (same as Wells 4.4.4.6)
- Page 73: A 3.3.4.3.4.3 multi-directional polyhedron (3.3.4.3.4.3)
- [a+ a- b+ c+ c- b-;
a- a+ c^- b^-]
- [a+ b+ c+ d+ e+ f+;
b+ a+ d^- c^- f^- e^-]
- [a+ b+ c+ d+ e+ f+;
b+ a+ e^+ f^+ c^+ d^+]
- Page 74: A {3,8} multi-directional polyhedron (same as Wells (3,8)-I6t)
- Page 75: A 3.3.3.4.4.3 multi-directional polyhedron (only when asymmetrically marked) (3.3.3.4.4.3)
- [a+ b+ c+ d+ e+ f+;
a+ c+ b+ f+ e- d+]
- Page 76: The {6,6} Coxeter sponge
- Page 77: A 4.6.4.6 multi-directional polyhedron (4.6.4.6)
- [a+ a^+ a+ a^+;
a-]
- [a+ a^+ b+ b^+;
a- a^- b-]
- [a+ a^+ b+ b^+;
b- b^- a-]
- [a+ b+ a+ b+;
a- b-]
- [a+ b+ a+ b+;
b^- a^-]
- [a+ b+ c+ d+;
a- b- c- d-]
- [a+ b+ c+ d+;
b^- a^- d^- c^-]
- [a+ b+ c+ d+;
c- d- a- b-]
- [a+ b+ c+ d+;
d^- c^- b^- a^-]
- Page 78: A 4.4.3.4.4 multi-directional polyhedron (4.4.3.4.4)
- [a b+ c+ c- b-;
a b+ c-]
- [a+ b+ c+ d+ e+;
a+ b+ d+ c+ e+]
- [a+ b+ c+ d+ e+;
a+ e- d+ c+ b-]
- Page 79: A 3.3.3.6.6 multi-directional polyhedron (3.3.3.6.6)
- [a+ a- b+ c b-;
a+ a- b- c]
- [a+ b+ c+ d+ e+;
a+ b+ e+ d+ c+]
- [a+ b+ c+ d+ e+;
b- a- e+ d+ c+]
- Page 80: A 4.3.4.6.6 multi-directional polyhedron (4.3.4.6.6)
- [a+ b+ b- a- c;
a- b- b+ a+ c]
- [a+ b+ c+ d+ e+;
a- c+ b+ d- e-]
- [a+ b+ c+ d+ e+;
d+ c+ b+ a+ e+]
- Page 81: A second 3.3.4.3.4.3 multi-directional polyhedron (3.3.4.3.4.3) (same as page 73)
- [a+ a- b+ c+ c- b-;
a+ a- b- c-]
- [a+ b+ c+ d+ e+ f+;
a+ b+ f+ e+ d+ c+]
- [a+ b+ c+ d+ e+ f+;
b- a- f+ e+ d+ c+]
- Page 82: A 3.4.3.4.3.4.3.4 multi-directional polyhedron (3.4.3.4.3.4.3.4)
- [a+ a- a^- a^+ a+ a- a^- a^+;
a-]
- [a+ a- b+ b- a+ a- b+ b-;
a- a+ b-]
- [a+ b+ c+ d+ a+ b+ c+ d+;
b+ a+ d+ c+]
- [a+ a- b+ c+ d+ d- c- b-;
a- a+ b- d^- c^-]
- [a+ a- b+ c+ d+ d- c- b-;
a- a+ d^+ c- b^+]
- [a+ a- b+ c+ d+ d- c- b-;
b^+ b^- a^+ c- d-]
- [a+ a- b+ c+ d+ d- c- b-;
c^- c^+ b- a^- d-]
- [a+ b+ c+ d+ e+ f+ g+ h+;
b+ a+ e^+ g+ c^+ h^+ d+ f^+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
b+ a+ f^- g+ h^- c^- d+ e^-]
- [a+ b+ c+ d+ e+ f+ g+ h+;
b+ a+ h+ e^- d^- g^- f^- c+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
b+ a+ h+ f^+ g^+ d^+ e^+ c+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
c^+ e+ a^+ f^+ b+ d^+ h+ g+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
d^- e+ f^- a^- b+ c^- h+ g+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
f+ c^- b^- e^- d^- a+ h+ g+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
f+ d^+ e^+ b^+ c^+ a+ h+ g+]
- Page 83: Polyhedron (39)P1 of the Hughes Jones polyhedra
- Page 84: A different {3,8} multi-directional polyhedron (same as Wells (3,8)-O4t)
- Page 85: A {3,7} multi-directional polyhedron (same as Wells (3,7)-I4t)
- Page 86: A second 4.4.4.6 multi-directional polyhedron (4.4.4.6)
- [a+ b+ c+ d+;
a- b- c+ d-]
- Page 87: Polyhedron S1 of the {4,5} cubic lattice polyhedra
- Page 88: A {4,5} (not cubic lattice) multi-directional polyhedron (same as Wells (4,5)-4tb)
- Page 89: A 4.4.4.8 multi-directional polyhedron (4.4.4.8)
- [a+ b+ c+ d+;
a- b- c- d+]
- Page 90: A {3,12} multi-directional polyhedron (same as Wells (3,12)-O8t)
- Page 91: A {3,9} multi-directional polyhedron (same as Wells (3,9)-I8t complement)
- Page 92: A 3.3.3.4.3.3.3.4 multi-directional polyhedron (3.3.3.4.3.3.3.4)
- [a+ a- b+ b- a+ a- b+ b-;
a+ a- b-]
- [a+ a- b+ c+ d+ d- c- b-;
a+ a- b- c- d+]
- [a+ b+ c+ d+ a+ b+ c+ d+;
a+ b+ d+ c+]
- [a+ b+ c+ d+ a+ b+ c+ d+;
b- a- d+ c+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
a+ b+ h+ g+ e+ f+ d+ c+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
a+ b+ h+ g+ f- e- d+ c+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
b- a- h+ g+ f- e- d+ c+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
e+ f+ h+ g+ a+ b+ d+ c+]
- [a+ b+ c+ d+ e+ f+ g+ h+;
f- e- h+ g+ b- a- d+ c+]
- Page 93: A 3.3.3.8.8 multi-directional polyhedron (3.3.3.8.8)
- [a+ b+ b- a- c;
a- b+ b- a+ c]
- [a+ b+ c+ d+ e+;
d+ b+ c+ a+ e+]
- [a+ b+ c+ d+ e+;
d+ b+ c+ a+ e-]
- [a+ b+ c+ d+ e+;
d+ c- b- a+ e+]
- [a+ b+ c+ d+ e+;
d+ c- b- a+ e-]
- Page 94: A 3.3.3.4.4.4 multi-directional polyhedron (3.3.3.4.4.4)
- [a+ a- b+ c+ c- b-;
a+ a- b- c-]
- [a+ b+ c+ d+ e+ f+;
a+ b+ f+ d- e- c+]
- [a+ b+ c+ d+ e+ f+;
a+ b+ f+ e+ d+ c+]
- [a+ b+ c+ d+ e+ f+;
b- a- f+ d- e- c+]
- [a+ b+ c+ d+ e+ f+;
b- a- f+ e+ d+ c+]
- Page 95: A 3.3.3.3.3.4.3 multi-directional polyhedron (3.3.3.3.3.4.3)
- [a+ b+ c+ d+ e+ f+ g+;
a+ e+ d- c- b+ g+ f+]
- Page 96: A 4.4.8.8.4 multi-directional polyhedron (4.4.8.8.4)
- [a+ a- b+ c b-;
a- a+ b- c]
- [a+ b+ c+ d+ e+;
a- b- e+ d+ c+]
- [a+ b+ c+ d+ e+;
a- b- e+ d- c+]
- [a+ b+ c+ d+ e+;
b+ a+ e+ d+ c+]
- [a+ b+ c+ d+ e+;
b+ a+ e+ d- c+]
- Page 97: A 4.8.4.8 multi-directional polyhedron (same as Wells 4.8.4.8)
- Page 98: A second 4.4.4.8 multi-directional polyhedron (4.4.4.8) (same as page 3(b))
- [a+ b+ c+ d+;
a- b+ c- d-]
- Page 99: A 3.4.4.4.4.4 multi-directional polyhedron (3.4.4.4.4.4)
- [a+ b+ b- a- c+ c-;
a- b- b+ a+ c- c+]
- [a+ b+ c+ d+ e+ f+;
d+ b- c- a+ f+ e+]
- [a+ b+ c+ d+ e+ f+;
d+ c+ b+ a+ f+ e+]
- Page 100: A 6.6.8.8 multi-directional polyhedron (6.6.8.8)
- [a+ b a- c;
a- b a+ c]
- [a+ b+ c+ d+;
c+ b+ a+ d+]
- [a+ b+ c+ d+;
c+ b+ a+ d-]
- Page 101: A 4.4.6.8 multi-directional polyhedron (4.4.6.8)
- [a+ b+ c+ d+;
a- b- c- d-]
Return to main page
Last updated: July 10, 2020